1
0

Update module lib/pq to v1.6.0 (#572)

Update module lib/pq to v1.6.0

Reviewed-on: https://kolaente.dev/vikunja/api/pulls/572
This commit is contained in:
renovate
2020-05-29 17:47:28 +00:00
committed by konrad
parent 5a04f1ecf4
commit 54b18b3c59
161 changed files with 19472 additions and 7 deletions

View File

@ -0,0 +1,119 @@
// Package rfc3961 provides encryption and checksum methods as specified in RFC 3961
package rfc3961
import (
"crypto/cipher"
"crypto/des"
"crypto/hmac"
"crypto/rand"
"errors"
"fmt"
"github.com/jcmturner/gokrb5/v8/crypto/common"
"github.com/jcmturner/gokrb5/v8/crypto/etype"
)
// DES3EncryptData encrypts the data provided using DES3 and methods specific to the etype provided.
func DES3EncryptData(key, data []byte, e etype.EType) ([]byte, []byte, error) {
if len(key) != e.GetKeyByteSize() {
return nil, nil, fmt.Errorf("incorrect keysize: expected: %v actual: %v", e.GetKeyByteSize(), len(key))
}
data, _ = common.ZeroPad(data, e.GetMessageBlockByteSize())
block, err := des.NewTripleDESCipher(key)
if err != nil {
return nil, nil, fmt.Errorf("error creating cipher: %v", err)
}
//RFC 3961: initial cipher state All bits zero
ivz := make([]byte, des.BlockSize)
ct := make([]byte, len(data))
mode := cipher.NewCBCEncrypter(block, ivz)
mode.CryptBlocks(ct, data)
return ct[len(ct)-e.GetMessageBlockByteSize():], ct, nil
}
// DES3EncryptMessage encrypts the message provided using DES3 and methods specific to the etype provided.
// The encrypted data is concatenated with its integrity hash to create an encrypted message.
func DES3EncryptMessage(key, message []byte, usage uint32, e etype.EType) ([]byte, []byte, error) {
//confounder
c := make([]byte, e.GetConfounderByteSize())
_, err := rand.Read(c)
if err != nil {
return []byte{}, []byte{}, fmt.Errorf("could not generate random confounder: %v", err)
}
plainBytes := append(c, message...)
plainBytes, _ = common.ZeroPad(plainBytes, e.GetMessageBlockByteSize())
// Derive key for encryption from usage
var k []byte
if usage != 0 {
k, err = e.DeriveKey(key, common.GetUsageKe(usage))
if err != nil {
return []byte{}, []byte{}, fmt.Errorf("error deriving key for encryption: %v", err)
}
}
iv, b, err := e.EncryptData(k, plainBytes)
if err != nil {
return iv, b, fmt.Errorf("error encrypting data: %v", err)
}
// Generate and append integrity hash
ih, err := common.GetIntegrityHash(plainBytes, key, usage, e)
if err != nil {
return iv, b, fmt.Errorf("error encrypting data: %v", err)
}
b = append(b, ih...)
return iv, b, nil
}
// DES3DecryptData decrypts the data provided using DES3 and methods specific to the etype provided.
func DES3DecryptData(key, data []byte, e etype.EType) ([]byte, error) {
if len(key) != e.GetKeyByteSize() {
return []byte{}, fmt.Errorf("incorrect keysize: expected: %v actual: %v", e.GetKeyByteSize(), len(key))
}
if len(data) < des.BlockSize || len(data)%des.BlockSize != 0 {
return []byte{}, errors.New("ciphertext is not a multiple of the block size")
}
block, err := des.NewTripleDESCipher(key)
if err != nil {
return []byte{}, fmt.Errorf("error creating cipher: %v", err)
}
pt := make([]byte, len(data))
ivz := make([]byte, des.BlockSize)
mode := cipher.NewCBCDecrypter(block, ivz)
mode.CryptBlocks(pt, data)
return pt, nil
}
// DES3DecryptMessage decrypts the message provided using DES3 and methods specific to the etype provided.
// The integrity of the message is also verified.
func DES3DecryptMessage(key, ciphertext []byte, usage uint32, e etype.EType) ([]byte, error) {
//Derive the key
k, err := e.DeriveKey(key, common.GetUsageKe(usage))
if err != nil {
return nil, fmt.Errorf("error deriving key: %v", err)
}
// Strip off the checksum from the end
b, err := e.DecryptData(k, ciphertext[:len(ciphertext)-e.GetHMACBitLength()/8])
if err != nil {
return nil, fmt.Errorf("error decrypting: %v", err)
}
//Verify checksum
if !e.VerifyIntegrity(key, ciphertext, b, usage) {
return nil, errors.New("error decrypting: integrity verification failed")
}
//Remove the confounder bytes
return b[e.GetConfounderByteSize():], nil
}
// VerifyIntegrity verifies the integrity of cipertext bytes ct.
func VerifyIntegrity(key, ct, pt []byte, usage uint32, etype etype.EType) bool {
h := make([]byte, etype.GetHMACBitLength()/8)
copy(h, ct[len(ct)-etype.GetHMACBitLength()/8:])
expectedMAC, _ := common.GetIntegrityHash(pt, key, usage, etype)
return hmac.Equal(h, expectedMAC)
}

View File

@ -0,0 +1,169 @@
package rfc3961
import (
"bytes"
"github.com/jcmturner/gokrb5/v8/crypto/etype"
)
const (
prfconstant = "prf"
)
// DeriveRandom implements the RFC 3961 defined function: DR(Key, Constant) = k-truncate(E(Key, Constant, initial-cipher-state)).
//
// key: base key or protocol key. Likely to be a key from a keytab file.
//
// usage: a constant.
//
// n: block size in bits (not bytes) - note if you use something like aes.BlockSize this is in bytes.
//
// k: key length / key seed length in bits. Eg. for AES256 this value is 256.
//
// e: the encryption etype function to use.
func DeriveRandom(key, usage []byte, e etype.EType) ([]byte, error) {
n := e.GetCypherBlockBitLength()
k := e.GetKeySeedBitLength()
//Ensure the usage constant is at least the size of the cypher block size. Pass it through the nfold algorithm that will "stretch" it if needs be.
nFoldUsage := Nfold(usage, n)
//k-truncate implemented by creating a byte array the size of k (k is in bits hence /8)
out := make([]byte, k/8)
// Keep feeding the output back into the encryption function until it is no longer short than k.
_, K, err := e.EncryptData(key, nFoldUsage)
if err != nil {
return out, err
}
for i := copy(out, K); i < len(out); {
_, K, _ = e.EncryptData(key, K)
i = i + copy(out[i:], K)
}
return out, nil
}
// DeriveKey derives a key from the protocol key based on the usage and the etype's specific methods.
func DeriveKey(protocolKey, usage []byte, e etype.EType) ([]byte, error) {
r, err := e.DeriveRandom(protocolKey, usage)
if err != nil {
return nil, err
}
return e.RandomToKey(r), nil
}
// RandomToKey returns a key from the bytes provided according to the definition in RFC 3961.
func RandomToKey(b []byte) []byte {
return b
}
// DES3RandomToKey returns a key from the bytes provided according to the definition in RFC 3961 for DES3 etypes.
func DES3RandomToKey(b []byte) []byte {
r := fixWeakKey(stretch56Bits(b[:7]))
r2 := fixWeakKey(stretch56Bits(b[7:14]))
r = append(r, r2...)
r3 := fixWeakKey(stretch56Bits(b[14:21]))
r = append(r, r3...)
return r
}
// DES3StringToKey returns a key derived from the string provided according to the definition in RFC 3961 for DES3 etypes.
func DES3StringToKey(secret, salt string, e etype.EType) ([]byte, error) {
s := secret + salt
tkey := e.RandomToKey(Nfold([]byte(s), e.GetKeySeedBitLength()))
return e.DeriveKey(tkey, []byte("kerberos"))
}
// PseudoRandom function as defined in RFC 3961
func PseudoRandom(key, b []byte, e etype.EType) ([]byte, error) {
h := e.GetHashFunc()()
h.Write(b)
tmp := h.Sum(nil)[:e.GetMessageBlockByteSize()]
k, err := e.DeriveKey(key, []byte(prfconstant))
if err != nil {
return []byte{}, err
}
_, prf, err := e.EncryptData(k, tmp)
if err != nil {
return []byte{}, err
}
return prf, nil
}
func stretch56Bits(b []byte) []byte {
d := make([]byte, len(b), len(b))
copy(d, b)
var lb byte
for i, v := range d {
bv, nb := calcEvenParity(v)
d[i] = nb
if bv != 0 {
lb = lb | (1 << uint(i+1))
} else {
lb = lb &^ (1 << uint(i+1))
}
}
_, lb = calcEvenParity(lb)
d = append(d, lb)
return d
}
func calcEvenParity(b byte) (uint8, uint8) {
lowestbit := b & 0x01
// c counter of 1s in the first 7 bits of the byte
var c int
// Iterate over the highest 7 bits (hence p starts at 1 not zero) and count the 1s.
for p := 1; p < 8; p++ {
v := b & (1 << uint(p))
if v != 0 {
c++
}
}
if c%2 == 0 {
//Even number of 1s so set parity to 1
b = b | 1
} else {
//Odd number of 1s so set parity to 0
b = b &^ 1
}
return lowestbit, b
}
func fixWeakKey(b []byte) []byte {
if weak(b) {
b[7] ^= 0xF0
}
return b
}
func weak(b []byte) bool {
// weak keys from https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-67r1.pdf
weakKeys := [4][]byte{
{0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01},
{0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE},
{0xE0, 0xE0, 0xE0, 0xE0, 0xF1, 0xF1, 0xF1, 0xF1},
{0x1F, 0x1F, 0x1F, 0x1F, 0x0E, 0x0E, 0x0E, 0x0E},
}
semiWeakKeys := [12][]byte{
{0x01, 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E},
{0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E, 0x01},
{0x01, 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1},
{0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1, 0x01},
{0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE},
{0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01},
{0x1F, 0xE0, 0x1F, 0xE0, 0x0E, 0xF1, 0x0E, 0xF1},
{0xE0, 0x1F, 0xE0, 0x1F, 0xF1, 0x0E, 0xF1, 0x0E},
{0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E, 0xFE},
{0xFE, 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E},
{0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1, 0xFE},
{0xFE, 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1},
}
for _, k := range weakKeys {
if bytes.Equal(b, k) {
return true
}
}
for _, k := range semiWeakKeys {
if bytes.Equal(b, k) {
return true
}
}
return false
}

View File

@ -0,0 +1,107 @@
package rfc3961
// Implementation of the n-fold algorithm as defined in RFC 3961.
/* Credits
This golang implementation of nfold used the following project for help with implementation detail.
Although their source is in java it was helpful as a reference implementation of the RFC.
You can find the source code of their open source project along with license information below.
We acknowledge and are grateful to these developers for their contributions to open source
Project: Apache Directory (http://http://directory.apache.org/)
https://svn.apache.org/repos/asf/directory/apacheds/tags/1.5.1/kerberos-shared/src/main/java/org/apache/directory/server/kerberos/shared/crypto/encryption/NFold.java
License: http://www.apache.org/licenses/LICENSE-2.0
*/
// Nfold expands the key to ensure it is not smaller than one cipher block.
// Defined in RFC 3961.
//
// m input bytes that will be "stretched" to the least common multiple of n bits and the bit length of m.
func Nfold(m []byte, n int) []byte {
k := len(m) * 8
//Get the lowest common multiple of the two bit sizes
lcm := lcm(n, k)
relicate := lcm / k
var sumBytes []byte
for i := 0; i < relicate; i++ {
rotation := 13 * i
sumBytes = append(sumBytes, rotateRight(m, rotation)...)
}
nfold := make([]byte, n/8)
sum := make([]byte, n/8)
for i := 0; i < lcm/n; i++ {
for j := 0; j < n/8; j++ {
sum[j] = sumBytes[j+(i*len(sum))]
}
nfold = onesComplementAddition(nfold, sum)
}
return nfold
}
func onesComplementAddition(n1, n2 []byte) []byte {
numBits := len(n1) * 8
out := make([]byte, numBits/8)
carry := 0
for i := numBits - 1; i > -1; i-- {
n1b := getBit(&n1, i)
n2b := getBit(&n2, i)
s := n1b + n2b + carry
if s == 0 || s == 1 {
setBit(&out, i, s)
carry = 0
} else if s == 2 {
carry = 1
} else if s == 3 {
setBit(&out, i, 1)
carry = 1
}
}
if carry == 1 {
carryArray := make([]byte, len(n1))
carryArray[len(carryArray)-1] = 1
out = onesComplementAddition(out, carryArray)
}
return out
}
func rotateRight(b []byte, step int) []byte {
out := make([]byte, len(b))
bitLen := len(b) * 8
for i := 0; i < bitLen; i++ {
v := getBit(&b, i)
setBit(&out, (i+step)%bitLen, v)
}
return out
}
func lcm(x, y int) int {
return (x * y) / gcd(x, y)
}
func gcd(x, y int) int {
for y != 0 {
x, y = y, x%y
}
return x
}
func getBit(b *[]byte, p int) int {
pByte := p / 8
pBit := uint(p % 8)
vByte := (*b)[pByte]
vInt := int(vByte >> (8 - (pBit + 1)) & 0x0001)
return vInt
}
func setBit(b *[]byte, p, v int) {
pByte := p / 8
pBit := uint(p % 8)
oldByte := (*b)[pByte]
var newByte byte
newByte = byte(v<<(8-(pBit+1))) | oldByte
(*b)[pByte] = newByte
}